3.300 \(\int \frac{(d^2-e^2 x^2)^p}{(d+e x)^4} \, dx\)

Optimal. Leaf size=73 \[ -\frac{2^{p-4} \left (\frac{e x}{d}+1\right )^{-p-1} \left (d^2-e^2 x^2\right )^{p+1} \, _2F_1\left (4-p,p+1;p+2;\frac{d-e x}{2 d}\right )}{d^5 e (p+1)} \]

[Out]

-((2^(-4 + p)*(1 + (e*x)/d)^(-1 - p)*(d^2 - e^2*x^2)^(1 + p)*Hypergeometric2F1[4 - p, 1 + p, 2 + p, (d - e*x)/
(2*d)])/(d^5*e*(1 + p)))

________________________________________________________________________________________

Rubi [A]  time = 0.0310373, antiderivative size = 73, normalized size of antiderivative = 1., number of steps used = 2, number of rules used = 2, integrand size = 22, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.091, Rules used = {678, 69} \[ -\frac{2^{p-4} \left (\frac{e x}{d}+1\right )^{-p-1} \left (d^2-e^2 x^2\right )^{p+1} \, _2F_1\left (4-p,p+1;p+2;\frac{d-e x}{2 d}\right )}{d^5 e (p+1)} \]

Antiderivative was successfully verified.

[In]

Int[(d^2 - e^2*x^2)^p/(d + e*x)^4,x]

[Out]

-((2^(-4 + p)*(1 + (e*x)/d)^(-1 - p)*(d^2 - e^2*x^2)^(1 + p)*Hypergeometric2F1[4 - p, 1 + p, 2 + p, (d - e*x)/
(2*d)])/(d^5*e*(1 + p)))

Rule 678

Int[((d_) + (e_.)*(x_))^(m_)*((a_) + (c_.)*(x_)^2)^(p_), x_Symbol] :> Dist[(d^(m - 1)*(a + c*x^2)^(p + 1))/((1
 + (e*x)/d)^(p + 1)*(a/d + (c*x)/e)^(p + 1)), Int[(1 + (e*x)/d)^(m + p)*(a/d + (c*x)/e)^p, x], x] /; FreeQ[{a,
 c, d, e, m}, x] && EqQ[c*d^2 + a*e^2, 0] &&  !IntegerQ[p] && (IntegerQ[m] || GtQ[d, 0]) &&  !(IGtQ[m, 0] && (
IntegerQ[3*p] || IntegerQ[4*p]))

Rule 69

Int[((a_) + (b_.)*(x_))^(m_)*((c_) + (d_.)*(x_))^(n_), x_Symbol] :> Simp[((a + b*x)^(m + 1)*Hypergeometric2F1[
-n, m + 1, m + 2, -((d*(a + b*x))/(b*c - a*d))])/(b*(m + 1)*(b/(b*c - a*d))^n), x] /; FreeQ[{a, b, c, d, m, n}
, x] && NeQ[b*c - a*d, 0] &&  !IntegerQ[m] &&  !IntegerQ[n] && GtQ[b/(b*c - a*d), 0] && (RationalQ[m] ||  !(Ra
tionalQ[n] && GtQ[-(d/(b*c - a*d)), 0]))

Rubi steps

\begin{align*} \int \frac{\left (d^2-e^2 x^2\right )^p}{(d+e x)^4} \, dx &=\frac{\left ((d-e x)^{-1-p} \left (1+\frac{e x}{d}\right )^{-1-p} \left (d^2-e^2 x^2\right )^{1+p}\right ) \int (d-e x)^p \left (1+\frac{e x}{d}\right )^{-4+p} \, dx}{d^5}\\ &=-\frac{2^{-4+p} \left (1+\frac{e x}{d}\right )^{-1-p} \left (d^2-e^2 x^2\right )^{1+p} \, _2F_1\left (4-p,1+p;2+p;\frac{d-e x}{2 d}\right )}{d^5 e (1+p)}\\ \end{align*}

Mathematica [A]  time = 0.0452202, size = 75, normalized size = 1.03 \[ -\frac{2^{p-4} (d-e x) \left (\frac{e x}{d}+1\right )^{-p} \left (d^2-e^2 x^2\right )^p \, _2F_1\left (4-p,p+1;p+2;\frac{d-e x}{2 d}\right )}{d^4 e (p+1)} \]

Antiderivative was successfully verified.

[In]

Integrate[(d^2 - e^2*x^2)^p/(d + e*x)^4,x]

[Out]

-((2^(-4 + p)*(d - e*x)*(d^2 - e^2*x^2)^p*Hypergeometric2F1[4 - p, 1 + p, 2 + p, (d - e*x)/(2*d)])/(d^4*e*(1 +
 p)*(1 + (e*x)/d)^p))

________________________________________________________________________________________

Maple [F]  time = 0.688, size = 0, normalized size = 0. \begin{align*} \int{\frac{ \left ( -{x}^{2}{e}^{2}+{d}^{2} \right ) ^{p}}{ \left ( ex+d \right ) ^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((-e^2*x^2+d^2)^p/(e*x+d)^4,x)

[Out]

int((-e^2*x^2+d^2)^p/(e*x+d)^4,x)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^p/(e*x+d)^4,x, algorithm="maxima")

[Out]

integrate((-e^2*x^2 + d^2)^p/(e*x + d)^4, x)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{e^{4} x^{4} + 4 \, d e^{3} x^{3} + 6 \, d^{2} e^{2} x^{2} + 4 \, d^{3} e x + d^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^p/(e*x+d)^4,x, algorithm="fricas")

[Out]

integral((-e^2*x^2 + d^2)^p/(e^4*x^4 + 4*d*e^3*x^3 + 6*d^2*e^2*x^2 + 4*d^3*e*x + d^4), x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{\left (- \left (- d + e x\right ) \left (d + e x\right )\right )^{p}}{\left (d + e x\right )^{4}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e**2*x**2+d**2)**p/(e*x+d)**4,x)

[Out]

Integral((-(-d + e*x)*(d + e*x))**p/(d + e*x)**4, x)

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (-e^{2} x^{2} + d^{2}\right )}^{p}}{{\left (e x + d\right )}^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((-e^2*x^2+d^2)^p/(e*x+d)^4,x, algorithm="giac")

[Out]

integrate((-e^2*x^2 + d^2)^p/(e*x + d)^4, x)